
Reversing Nearness via Gradient Descent

May 10, 2020

Mathematics

Is gradient descent a viable approach for Reversing Nearness?

Word Count: 3934

Contents

1 Introduction 2

2 Problem Statement 3

2.1 Toroidal Grid . 3

2.2 Evaluation Function . 3

2.3 Distance Metric . 4

2.4 Token Comparisons . 5

2.5 Loss Function in Matrix Form . 7

3 Superposition 8

3.1 Definition . 8

3.2 Generalization of the Loss Function . 9

4 Optimization 11

4.1 Gradient Descent . 11

4.1.1 Partial Derivative of Loss Function 12

4.2 Generalization of Discrete Constraints 14

4.2.1 Doubly Stochastic Matrices . 14

4.2.2 Sinkhorn-Knopp Algorithm . 15

4.2.3 Zero Line-Sum Modified Jacobian 16

4.2.4 Non-negative Matrices . 17

4.3 Generalization to Discrete Solutions . 18

4.4 Optimization Procedure . 20

4.4.1 Learning Rate . 20

4.4.2 Superposition Initialization . 21

4.4.3 Optimization Loop . 21

5 Evaluation 22

5.1 Graphs of Loss over Time . 22

5.2 Comparison to State of the Art . 23

5.3 Conclusion . 23

A Lower Bound Constants 24

1

1 Introduction

Gradient descent is an iterative algorithm to optimize1 a continuous function. It does

so by shifting parameters in the direction of opposite of their gradients with respect to

(w.r.t.) the function, that is:

θ′ = θ − α d

dθ
L(θ)

Where θ is the parameter to optimize to minimize the value of function L, and α is

the learning rate: an arbitrary scaling factor. Gradient descent can be generalized to

multi-variable optimization through the use of partial derivatives within Jacobian matrices.

Regardless, it self-evident why continuous functions are required.

The primary goal of this essay is to measure how capable gradient descent is within

generalization: whether discrete solutions can be obtained for a discrete loss function

by generalizing it into continuous spaces. “Reversing Nearness”, a programming contest

held by Al Zimmermann, proved to be suitable for this purpose, because to the best

of the author’s knowledge, had only been approached with non-gradient optimization

techniques, such as hill climbing and simulated annealing.2 For good reason, it is a discrete

optimization problem. Yet, it has a relatively simple objective function: given a grid of

tokens, “your task is to rearrange the tokens so that pairs of tokens that are near each

other become far from each other and those that are far from each other become near.”[1]

The definitions of “tokens”, “grids”, and distance will be explained within the essay.

“It will be fun”, I said, justifying all of my calculus classes. Hence, my research

question: Is gradient descent a viable approach for Reversing Nearness?

1. Short answer: Yes

2. Long answer:

1usually in the context of minimization, hence ‘descent’
2beyond the scope of this essay

2

2 Problem Statement

2.1 Toroidal Grid

As per AZsPCs[1] specifications, the initial toroidal grid O is defined as an N ×N grid

of unique tokens which “wrap around” the edges. A token is of the form IJ , where I

and J are alphabetic representations of the indices of the rows and columns respectively,

of a token, within O,3 e.g., AC corresponds to the token in row 1, column 3 of O, DF

corresponds to the row 4, column 6 of O, etc. Fig. 1b shows O for N = 4. Tokens outside

of the square grid represent tokens “wrapping around” the edges, resembling a toroidal

surface as shown in Fig. 1a.

(a) A Simple Toroid by Yassine Mrabet[2]

AA

BA

CA

DA

AB

BB

CB

DB

AC

BC

CC

DC

AD

BD

CD

DD

DA

DA

DB

DB

DC

DC

DD

DD

AD AA

BD BA

CD CA

DD DA

(b) A 4× 4 intial toroidal grid

Figure 1: Representations of a toroidal grid

2.2 Evaluation Function

The goal of the challenge is to rearrange the tokens within O to form a new grid X that

minimizes a loss function computed with the following procedure:

1. For each unique pair of tokens (e.g., [AA,BA] is equivalent to [BA,AA], so [BA,AA]

is omitted), calculate the squared distance between them in X,

2. Multiply each of these by the squared distance between the pair of tokens within O,

3. Sum all of these products,

3This is important because after rearranging the tokens, the identity of the token depends on its
position within O, and not the rearranged position

3

4. Subtract a lower-bound corresponding to the value of N (Appendix A)

2.3 Distance Metric

To evaluate the loss function, a distance metric between two tokens must be established,

which necessitates a coordinate system. Here, the coordinate of a token is defined as

the indices of the token within X i.e., any token within row 5, column 3 of X, has

coordinates (5, 3). Note that within O, coordinates, indices, and token representations

are all equivalent.

Let two two-dimensional coordinates be s1 = (x1, y1) and s2 = (x2, y2). The Euclidean

distance deuclid is defined as,

deuclid(s1, s2) =
√

(x2 − x1)2 + (y2 − y1)2 =
√

(∆euclidx)2 + (∆euclidy)2 (1)

On a toroidal surface however, ∆x and ∆y can each have 2 possible values. A one-

dimensional toroidal surface of length N is illustrated in Fig. 2. The corresponding

possible values for ∆x are as follows,

∆1(x) = x2 − x1

∆2(x) = (x1 − 0) + (N − x2) = x1 +N − x2 (2)

0 Nx1 x2

Figure 2: A one-dimensional diagram of toroidal distance, with the two arrows representing
two possible distances

To obtain a general equation that works when x1 > x2:

∆1(x) = |x2 − x1|

∆2(x) = min (x1, x2) +N −max (x1, x2) (3)

where |a| is the absolute value of a, min (a, b) and max (a, b) are defined as the minimum

and maximum between the values of a and b respectively, that is,

min (a, b) =


a, if a ≤ b

b, if a > b

max (a, b) =


a, if a ≥ b

b, if a < b

(4)

4

min and max are used to determine the “left-most” and the “right-most” coordinates.

One-dimensional toroidal distance is then defined as

∆x = min (∆1(x),∆2(x)) (5)

And in two dimensions, the toroidal distance and squared toroidal distance are

d(s1, s2) =
√

(∆x)2 + (∆y)2

d2(s1, s2) = (∆x)2 + (∆y)2 (6)

From now on, distance refers to d2.

For example, the distance between s1 = (1, 4), s2 = (2, 1) and N = 5 is calculated as

follows:

∆1(x) = |2− 1| = 1

∆2(x) = min (1, 2) + 5−max (1, 2) = 1 + 5− 2 = 4

∆1(y) = |1− 4| = 3

∆2(y) = min (4, 1) + 5−max (4, 1) = 1 + 5− 4 = 2

∆(x) = min (1, 4) = 1

∆(y) = min (3, 2) = 2

d2(s1, s2) = 12 + 22 = 5 (7)

2.4 Token Comparisons

In order to compute distances between all possible pairs, a corresponding representation

is required, i.e., a 4-dimensional matrix (or tensor) with elements being distances between

source tokens (first 2 dimensions) and target tokens (next 2 dimensions). An example of

the structure of the comparison for an N = 2 grid is shown in Fig. 3a.

The dimensionality of the grid can be reduced from a tensor into a matrix, to reduce

complexity (e.g., number of Σs in 2.5) by applying the matrix-flattening scheme in Fig. 4

twice, on the source and target dimensions, reducing C(X) from N × N × N × N to

N2 ×N2. Elements within the 4-dimensional tensor are of form C(X)i,j,k,l, whereas the

5

A B

A

B

AA
AA
AA
BA

AA
AB
AA
BB

A B

A

B

BA
AA
BA
BA

BA
AB
BA
BB

A B

A

B

AB
AA
AB
BA

AB
AB
AB
BB

A B

A

B

BB
AA
BB
BA

BB
AB
BB
BB

A B

A

B

(a)

AA AB BA BB

AA

AB

BA

BB

AA
AA
AB
AA
BA
AA
BB
AA

AA
AB
AB
AB
BA
AB
BB
AB

AA
BA
AB
BA
BA
BA
BB
BA

AA
BB
AB
BB
BA
BB
BB
BB

(b)

Figure 3: Tensors C(X) in the forms C(X)i,j,k,l and C(X)m,n respectively, representing
comparison grids of an N = 2 toroidal grid, where every element represents the distance
between tokens IJ and KL within X. Shaded cells denote unique comparisons.

A11

A11

1

A21 A21

4

A31

A31

7A12

A12

2

A22 A22

5

A32

A32

8A13

A13

3

A23 A23

6

A33

A33

9

Figure 4: Matrix-flattening

2-dimensional elements are of form C(X)m,n. To do this conversion,

m = (i− 1)×N + j =⇒ m÷N = i− 1 remainder j

n = (k − 1)×N + l =⇒ n÷N = j − 1 remainder l (8)

Eq. 8 can be understood by realizing that A2,3 (Fig. 4) is offset by (2− 1) groups of 3 and

an additional 3 after flattening.

Note that both C(X)i,j,k,l and C(X)m,n represent the distance between tokens IJ

and KL within X as defined within section 2.3, the difference lies only within their

dimensionality. The two-dimensional representation of Fig. 3a is shown in Fig. 3b.

From now on, let C(X) refer to the two dimensional comparison grid. Examples are

shown in Fig. 5.

6

AA AB

BA BB

(a) O

AA AB BA BB[]AA 0 1 1 2
AB 1 0 2 1
BA 1 2 0 1
BB 2 1 1 0

(b) C(O)

AA AB

BB BA

(c) An example toroidal grid X

AA AB BA BB[]AA 0 1 2 1
AB 1 0 1 2
BA 2 1 0 1
BB 1 2 1 0

(d) C(X)

Figure 5: Example toroidal grids and comparison grids

2.5 Loss Function in Matrix Form

The computation of products of only unique comparisons is greatly simplified due to

the 2-dimensional representation (Fig. 3b) of C(X), which is symmetric along the main

diagonal i.e., unique comparisons (shaded cells) along the upper triangle are mirrored

along the lower triangle i.e., AA
AB is mirrored by AB

AA . Also, the elements of C(O) and C(X)

are zero-valued along the diagonal (i.e., not contributing to the loss function) due to the

distance between a point and itself being 0. Therefore, to calculate the loss function a

simple factor of 1
2

can be added, and the loss of X, L(X) can be written as:

L(X) =
1

2

N2∑
m

N2∑
n

C(X)m,nC(O)m,n − c

=
1

2

N2∑
m

N2∑
n

(C(X)� C(O))m,n − c (9)

Where (�) denotes element-wise multiplication, that is4

C = A�B =⇒ Ci,j = Ai,jBi,j ∀i, j (10)

The loss function for Fig. 5 is computed as follows:

L(X) =
1

2

N2∑
m

N2∑
n

(C(X)� C(O))m,n − c

4every element within C is equal to the product of the elements of A and B within that position

7

=
1

2

N2∑
m

N2∑
n




0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0

�


0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0



m,n

− c

=
1

2

N2∑
m

N2∑
n


0 1 2 2
1 0 2 2
2 2 0 1
2 2 1 0


m,n

− c

=
1

2
· 20− c

= 10− c (11)

3 Superposition

3.1 Definition

Since the entries of the toroidal grid are discrete (i.e., discrete tokens with discrete

coordinates), it is not yet possible to apply gradient descent. Therefore, relaxing the

constraints to enable “superposition” — here defined as having token fragments in multiple

positions, each of the fragments having its own weight — is essential. A fragment here

refers to a fraction of a token and weight refers to the literal fraction (i.e. numerical value).

Inspiration was taken from the field of physics, where the positions of electrons are not

indicated by coordinates, but probability density functions,5 a concept called quantum

superposition. This analogy will be taken further within 4.3.

The superposition grid S consists can also be visualized as a 4-dimensional matrix

with elements representing the weights within all possible token positions within O (first 2

dimensions) of all possible token values (next 2 dimensions). Using the matrix flattening

scheme from Eq. 8, a 2-dimensional representation is possible. The representations are

identical to Fig. 3 (but without shaded cells), and in contrast to Fig. 3, the elements of

the grid do not represent distances, but rather, the element Si,j,k,l or Sm,n represent the

weight of the fragment within position IJ of token KL.

Let S denote the 2-dimensional representation. Note, within S, rows represent the

5probability as a function of position

8

AA AB

BB BA

(a) An example toroidal grid X

AA AB BA BB

AA

AB

BA

BB

AA
AA
AB
AA
BA
AA
BB
AA

AA
AB
AB
AB
BA
AB
BB
AB

AA
BA
AB
BA
BA
BA
BB
BA

AA
BB
AB
BB
BA
BB
BB
BB

(b) Sm,n

Figure 6: Superposition of a toroidal grid. Shaded cells have weight 1, non-shaded cells
have weight 0.

possible positions within O and columns represent the token values. An example of

superposition for a discrete toroidal grid is shown in Fig. 6.

By doing so, the limitations associated with a discrete grid are sidestepped. All token

values are associated with all positions, with continuous (real-valued) fragment weights.

Therefore, the loss function can be differentiated w.r.t. the weights — instead of optimizing

X, we optimize its continuous representation, S. Note that with a superposition grid

with entries derived from a toroidal grid, the loss function will simplify into that in 2.5 as

demonstrated within the next section.

3.2 Generalization of the Loss Function

Defining the loss function for this formulation requires measuring the distance between

every token value within every position (i.e., all fragments), to every other token value

(ensuring unique value comparisons) within every position, scaled by the weights of the

fragments. That is, for token value b in position a, compared to the token value d in

position c, the product of distances (in O and X) should be scaled by Sa,bSc,d, because

the weights within S reflect the extent to which a fragment should affect the loss (e.g.,

half a token should impact the loss half as much).

The distance between these two fragments in X is defined as C(O)a,c, because a and c

correspond to token position, whereas C(O)b,d represents the distance between the 2 tokens

within O, since within O, the token values are equal to the token positions (section 2.1).

Alike with section 2.4, duplicate evaluations between values (not positions) must be

9

prevented, for example: each of [AAAA , ABAA , BAAA , BBAA] (token value AA) should be compared

to [AAAB , ABAB , BAAB , BBAB] (token value AB), but not vice versa, because the value comparisons

have already been made.

Therefore, the loss function can be written as

L(S) =
1

2

N2∑
a

N2∑
b

N2∑
c

N2∑
d

Sa,bSc,dC(O)a,cC(O)b,d − c (12)

Similar to section 2.5, we can simply divide the loss by 2, because duplicate value

comparisons are only made when the values of b and d are swapped (C(O)b,d remains

the same), and because C(O) is zero-valued along the diagonal, where b = d, due to the

inclusion of C(O)b,d, the distance of a token against itself.

In summary,

∑N2

a represents an iteration over source position,

∑N2

b represents an iteration over source value,

∑N2

c represents an iteration over target position,

∑N2

d represents an iteration over target values,

Sa,b represents the weight of fragment in position A of value B,6

Sc,d represents the weight of fragment in position C of value D,7

C(O)a,c represents the distance between source and target positions,

C(O)b,d represents the distance between source and target values within O,

c is the lower bound constant (Appendix A)

In order to calculate the loss of Fig. 6b exhaustively with Eq. 12, (N2)4 iterations,

or 256 iterations for N = 2, are required to go over the all the possible combinations

of a, b, c, d. For brevity, only non-zero configurations of a, b, c, d (i.e., only if source and

target weights are non-zero) are shown. Note that C(O) is taken from Fig. 5b.

6expand it by undoing the matrix flattening scheme in Eq. 8
7see footnote footnote 6

10

a b c d Sa,b×Sc,d×C(O)a,c×C(O)b,d=Product
1 1 1 1 1 1 0 0 0
1 1 2 2 1 1 1 1 1
1 1 3 4 1 1 1 2 2
1 1 4 3 1 1 2 1 2
2 2 1 1 1 1 1 1 1
2 2 2 2 1 1 0 0 0
2 2 3 4 1 1 2 1 2
2 2 4 3 1 1 1 2 2
3 4 1 1 1 1 1 2 2
3 4 2 2 1 1 2 1 2
3 4 3 4 1 1 0 0 0
3 4 4 3 1 1 1 1 1
4 3 1 1 1 1 2 1 2
4 3 2 2 1 1 1 2 2
4 3 3 4 1 1 1 1 1
4 3 4 3 1 1 0 0 0

Sum 20

Table 1: Superposition loss of Fig. 6b

Therefore, the loss is equal to

L(S) =
1

2
· 20− c

= 10− c (13)

This is equivalent to the loss obtained in Eq. 11. Obviously, this loss function can acco-

modate non-discrete weights within the superposition grid. This example is purposefully

simplistic.

4 Optimization

4.1 Gradient Descent

Gradient descent is an iterative optimization algorithm, utilizing the first derivative of

the loss function L with respect to all function parameters θ. To recall, a single iteration

of gradient descent is as follows:

θ′ = θ − α δ

δθ
L(θ) (14)

α is the learning rate, an arbitrary positive scaling factor, determining the magnitude of

the update w.r.t. the gradient.

Fig. 7 is a toy example of gradient descent, but it generalizes to more complicated

problems such as Reversing Nearness.

11

0 0.5 1 1.5 2

−1

0

1

2

3

4

Gradient Descent on y = x3 − 2x

Figure 7: Demonstration of gradient descent convergence: 10 iterations with α = 5× 10−2

and θ0 = 1.8.

4.1.1 Partial Derivative of Loss Function

A partial derivative is the derivative of a multi-variable function w.r.t. a single variable,

and is denoted by δ
δx

instead of d
dx

. Hence, our goal is to find the Jacobian matrix J of

L(S) w.r.t. S, defined as follows:

J =
δL(S)

δS
=


δL(S)
δS1,1

· · · δL(S)
δS1,N2

...
. . .

...
δL(S)
δSN2,1

· · · δL(S)
δSN2,N2

 (15)

To do that, a general solution to the partial derivative: δL(S)
δSi,j

, is required. Recall that

the loss function is defined as

L(S) =
1

2

N2∑
a

N2∑
b

N2∑
c

N2∑
d

Sa,bSc,dC(O)a,cC(O)b,d − c (16)

When evaluating Ji,j, only Si,j is treated as a variable, whereas others are treated as

constants, evaluating to 0 after differentiation. Note that Si,j is only included within the

loss when (a, b) = (i, j) or (c, d) = (i, j) or both. The derivatives of the terms of for the

respective cases are as follows:

A =
δL(S)

δSi,j
=

δ

δSi,j

(
1

2

N2∑
c

N2∑
d

Si,jSc,dC(O)i,cC(O)j,d

)
first case

=
1

2

N2∑
c

N2∑
d

Sc,dC(O)i,cC(O)j,d

12

B =
δL(S)

δSi,j
=

δ

δSi,j

(
1

2

N2∑
a

N2∑
b

Sa,bSi,jC(O)a,iC(O)b,j

)
second case

=
1

2

N2∑
a

N2∑
b

Sa,bC(O)a,iC(O)b,j

C =
δL(S)

δSi,j
=

δ

δSi,j

(
1

2
Si,jSi,jC(O)i,iC(O)j,j

)
third case

= Si,jC(O)i,iC(O)j,j

= 0 (17)

C is 0 due because it includes the distance of a token against itself. Therefore, δL(S)
δSi,j

,

taking into account all 3 cases, is equal to A + B −C = A + B, but it can be simplified,

δL(S)

δSi,j
= A + B

=
1

2

(
N2∑
c

N2∑
d

Sc,dC(O)i,cC(O)j,d +
N2∑
a

N2∑
b

Sa,bC(O)a,iC(O)b,j

)

=
1

2

(
N2∑
a

N2∑
b

Sa,bC(O)i,aC(O)j,b +
N2∑
a

N2∑
b

Sa,bC(O)a,iC(O)b,j

)
(18)

=
1

2

(
N2∑
a

N2∑
b

Sa,bC(O)a,iC(O)j,b +
N2∑
a

N2∑
b

Sa,bC(O)a,iC(O)j,b

)
(19)

=
N2∑
a

N2∑
b

Sa,bC(O)a,iC(O)j,b (20)

Eq. 18 utilizes the independence of the 2 summations, equating the summation variables.

Eq. 19 utilizes the symmetric nature of C(O), in order to have a and b along the same

axes within all terms.

For example, δL(S)
δS2,3

for Fig. 6b is calculated as follows,

δL(S)

δS1,1

=
N2∑
a

N2∑
b

Sa,bC(O)a,iC(O)j,b

=
N2∑
a

N2∑
b


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

�


1 1 1 1
0 0 0 0
2 2 2 2
1 1 1 1

�


1 2 0 1
1 2 0 1
1 2 0 1
1 2 0 1

 (21)

=
N2∑
a

N2∑
b


1 0 0 0
0 0 0 0
0 0 0 2
0 0 0 0



13

= 3 (22)

C(O)a,i and C(O)j,b within Eq. 21 are repeated along the columns and rows respectively,

due to i and j being constant w.r.t. a and b respectively. Computing J for Fig. 6b results

in,

J =


5 5 3 3
5 5 3 3
3 3 5 5
3 3 5 5

 (23)

Now, a naive approach would be to apply gradient descent as follows:

S ′ = S − αJ (24)

But doing so would not take into the constraints involved within discrete optimization

(that generalize to continuous optimization).

4.2 Generalization of Discrete Constraints

4.2.1 Doubly Stochastic Matrices

First of all, negative weights are nonsensical, since weights should reflect the portion of

the token located within a certain position.

In the discrete problem, within X or O, every position has a single unique token, and

every token has a single unique position. Generalizing this to superposition, note that

all rows and columns should sum to 1 (e.g., Fig. 6b). Intuitively, a superposition grid

divides the weight of each token value, into fragments whose weights sum to 1, with every

position containing in total weight 1, albeit from fragments and not whole tokens.

Following from these observations, S is said to be doubly stochastic. That is, any

matrix A with only non-negative values and∑
i

Ai,j =
∑
j

Ai,j = 1 (25)

is doubly stochastic.[3] Therefore, to enforce this constraint, the superposition S must

remain doubly stochastic after the gradient descent update, or else, the weights could be

set to 0, causing a loss of 0− c.

14

4.2.2 Sinkhorn-Knopp Algorithm

This section explains the algorithm used within section 4.2.3.

A well-known algorithm to convert any non-negative matrix8 into a doubly stochastic

matrix is the Sinkhorn-Knopp algorithm (also named RAS).[4] There is a proof[5] and

several papers analyzing its convergence.[6, 7] Nonetheless, the algorithm itself is simple:

alternating the normalization of rows and columns of a matrix. Here, “normalization” is

defined as forming a sum of 1, by dividing each element within each row or column by the

sum of the row or column.

Let K be an n × n non-negative matrix.9 A single iteration of RAS is defined as

follows:

K ′ =

(ΣN
j K1,j)

−1

. . .

(ΣN
j KN,j)

−1

K normalizing rows

RAS(K) = K ′′ = K ′

(ΣN
i K

′
i,1)
−1

. . .

(ΣN
i K

′
i,N)−1

 normalizing columns (26)

The scaling matrices are diagonal (non-diagonal elements are 0s). Let RASn(K) indicate

n iterations of RAS on K, i.e., RAS2(K) = RAS(RAS(K)).

Fig. 8 demonstrates the effectiveness of RAS in normalizing randomly sampled matrices.

Graphed on the y-axis is the error: the squared distance between the sums of the rows

and columns, and 1, defined as,

E(X) =
N∑
i

((
N∑
j

Xi,j

)
− 1

)2

+
N∑
j

((
N∑
i

Xi,j

)
− 1

)2

(27)

An example of a single iteration of RAS:

K =

0 2 4
1 3 5
2 4 6


K ′ =

1
6

0 0
0 1

9
0

0 0 1
12

0 2 4
1 3 5
2 4 6

 =

0 1
3

2
3

1
9

1
3

5
9

1
6

1
3

1
2


8having at least 1 positive value in each row and column
9see footnote 8

15

0 2 4 6 8

10−12

10−9

10−6

10−3

100

Number of Iterations

S
q
u
ar

ed
E

rr
or

Squared Error vs Number of Iterations

Figure 8: Demonstration of RAS convergence: RAS applied on 5 randomly generated
N × N matrices with N = 100, sampled from a uniform distribution [0, 2

N
) (mean 1

N
).

Note the logarithmic scale.

RAS(K) = K ′′ =

0 1
3

2
3

1
9

1
3

5
9

1
6

1
3

1
2


18

5
0 0

0 1 0
0 0 18

31

 =

0 1
3

12
31

2
5

1
3

10
31

3
5

1
3

9
31

 (28)

Note that the sums of rows and columns of RAS(K) are closer to 1 than K.

4.2.3 Zero Line-Sum Modified Jacobian

To maintain the doubly stochastic nature of the superposition grid within gradient descent

update (Eq. 24), J must be modified into a zero line-sum (ZLS) matrix.[8] A ZLS matrix

has all rows and columns summing to 0, that is, a matrix A is ZLS if and only if∑
i

Ai,j =
∑
j

Ai,j = 0 (29)

Intuitively, this means that the gradient update should not change the sum of the weights

of any token value or within a position (to maintain a doubly stochastic S).

As stated within [8], a ZLS can be obtained by taking the difference of 2 doubly

stochastic matrices.

Proof. Let A and B be doubly stochastic matrices.∑
i

(Ai,j −Bi,j) =
∑
i

Ai,j −
∑
i

Bi,j = 1− 1 = 0

16

∑
j

(Ai,j −Bi,j) =
∑
j

Ai,j −
∑
j

Bi,j = 1− 1 = 0 (30)

Therefore, A−B is ZLS.

Hence, J can approximate a doubly stochastic matrix through the RAS algorithm,10

and by subtracting it by another doubly stochastic matrix, a ZLS-J can be obtained.

This second doubly stochastic matrix D can be easily obtained by scaling a ones-matrix

(matrix filled with ones). Let D with dimensions N2 ×N2 be defined as follows:

Di,j =
1

N2

N2∑
i

Di,j =
N2∑
j

Di,j = N2 × 1

N2
= 1 D is doubly stochastic (31)

Because D is uniform (all elements have identical values), the relative magnitudes of the

elements within RASn(J) w.r.t. other elements are preserved, i.e.,

RASn(J)a,b > RASn(J)c,d ⇐⇒ RASn(J)a,b −Da,b > RASn(J)c,d −Dc,d (32)

Let J ′ = RASn(J)−D. For J in Eq. 23, and n = 1 it is computed as follows:

J ′ = RAS1




5 5 3 3
5 5 3 3
3 3 5 5
3 3 5 5


− 1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



=
1

16


5 5 3 3
5 5 3 3
3 3 5 5
3 3 5 5

− 1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 =
1

16


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

 (33)

4.2.4 Non-negative Matrices

Assuming S is doubly stochastic, and with ZLS-J ′, the result of the gradient descent

update S ′ = S − αJ ′, has rows and columns summing to 1. For example, with S and J

from Fig. 6b and Eq. 33 respectively, and α = 1,

S ′ = S − αJ ′ (34)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

− 1

16


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

 =
1

16


15 −1 1 1
−1 15 1 1
1 1 −1 15
1 1 15 −1

 (35)

10the Jacobian of the loss function is non-negative because S and C(O) are non-negative, so RAS is
applicable

17

But S ′ is not necessarily doubly stochastic, because S ′i,j ≥ 0 is not guaranteed, as shown

in Eq. 35. Given that S ′ has dimension N2×N2 the following procedure corrects negative

entries while still maintaining the rows and columns summing to 1,

S ′′i,j =


(S ′i,j −minS ′)× 1

1−N2 minS′ , if ∃a, b S ′a,b < 0

S ′i,j, if @a, b S ′a,b < 0

(36)

minS ′ refers to the smallest value within S ′.11 (S ′i,j −minS ′) removes negative entries,

adding (−N2 minS ′) to the sums of the rows and columns; dividing by the new sum

restores the doubly stochastic nature of S ′. S ′′ for Eq. 35 is calculated as follows:

S ′′ =
1

1 + 4(1
16

)

 1

16


15 −1 1 1
−1 15 1 1
1 1 −1 15
1 1 15 −1

+
1

16


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




=


4
5

0 1
10

1
10

0 4
5

1
10

1
10

1
10

1
10

0 4
5

1
10

1
10

4
5

0

 (37)

With this, S can be optimized by gradient descent.

4.3 Generalization to Discrete Solutions

Note that only the continuous representation S has been optimized, and not the discrete

solution X, which has been the goal of the essay. Expanding on the idea of quantum

superposition within physics, by observing (or revealing) the position of an electron, the

probability density function of the electron collapses into a single point. Within this essay,

the probability density function has been represented by the weights of fragments within

various positions. For simplicity, instead of sampling from a distribution, revealing a token

value will place the entire weight of the token within the position of the fragment with

the highest weight (the most likely position).

Taking this analogy even further, the tokens are entangled. In physics, if two electrons

are entangled, revealing the spin of one electron instantaneously reveals the spin of the

other: if one is found to be spin up, the other electron has spin down, and vice versa.

11∃a, b S′
a,b < 0 means “exists a, b such that S′

a,b is negative”

18

The system within this essay involves N “electrons” (tokens), and when the position of

a token is revealed, fragments of other tokens within the same position are removed —

no two tokens should inhabit the same position, adhering to the constraints of discrete

optimization. Also, the fragments of revealed tokens (columns of S) and fragments within

revealed positions (rows of S) are not subject to optimization since they are fixed.

Let R be the set of indices (rows and columns) of revealed fragments, initially empty.

The procedure for revealing a token is defined as follows:

R←R ∪ arg max
m,n

Sm,n

such that (@a (a,m) ∈ R) ∧ (@b (n, b) ∈ R) (38)

arg maxm,n Sm,n returns the indices of the fragment with the highest weight that does not

share a token value or token position with any already revealed fragment. If there are

multiple fragments with the largest value, any fragment can be chosen. R∪arg maxm,n Sm,n

is the set of already revealed fragments including the newly revealed fragment, and A← B

indicates a reassignment: the new value of A is B.

Note that the previous procedure only works when arg max is defined, when there are

tokens to reveal, when |R| < N , where |R| denotes cardinality, (i.e., the number of indices

within R).

For example, with

S =


5 4 1 0
4 1 3 0
3 2 0 0
0 0 0 0

 (39)

revealing all tokens sequentially will result in R = {(1, 1), (2, 3), (3, 2), (4, 4)}, revealed in

that order. Coordinates can be restored into tokens by applying Eq. 8.

To only perform optimization on non-revealed token values and columns, the revealed

rows and columns can be removed from J , to obtain Jcut and J ′cut (with D adjusted to

have Di,j = 1
N2−|R|), which can then be expanded to its original dimensions N2 × N2,

by filling the revealed rows and columns with 0s, effectively preventing optimization of

revealed rows and columns.

19

For example, with J from Eq. 23 and R = {(1, 1)} and n = 3,

Jcut =

5 3 3
3 5 5
3 5 5


J ′cut = RASn(Jcut)−D (40)

=

0.4884 0.2558 0.2558
0.2558 0.3721 0.3721
0.2558 0.3721 0.3721

− 1

3

1 1 1
1 1 1
1 1 1


≈

 0.1551 −0.0775 −0.0775
−0.0775 0.0389 0.0389
−0.0775 0.0389 0.0389



J ′final ≈


0 0 0 0
0 0.1551 −0.0775 −0.0775
0 −0.0775 0.0389 0.0389
0 −0.0775 0.0389 0.0389

 (41)

After which the methodology in section 4.2.4 can be used with J ′final to obtain S ′ and S ′′,

since J ′final is still ZLS.

4.4 Optimization Procedure

4.4.1 Learning Rate

α could simply be 1. But note that as N increases, the magnitude of each element within

J ′ decreases due to RAS scaling (N2 non-negative elements have to sum to 1) and ZLS

offsetting. The following is an attempt to formulate a “one size fits all” solution for α for

all N , without requiring human fine-tuning. Recall Eq. 34, now modified to accomodate

revealed tokens,

S ′ = S − αJ ′final (42)

Let A be the set of possible values of α i.e., the α required to result in a 0-valued S ′i,j ,

only if J ′finali,j is positive (preventing α < 0 or a division by 0). That is,

S = αJ ′final

A =

{
Si,j

J ′finali,j

∣∣∣∣1 ≤ i, j ≤ N2,J ′finali,j > 0

}
(43)

α is then simply chosen to be the arithmetic mean of A. Intuitively, this process selects

the α that removes about half of the fragments that contribute to the loss negatively, i.e.,

20

J ′finali,j > 0). Furthermore, overshooting α, causing S ′i,j < 0, will be handled by Eq. 36.

For example, for S from Fig. 6b and J ′finali,j from Eq. 41,

A =

{
1

0.1551
,

0

0.0389
,

1

0.0389
,

1

0.0389
,

0

0.0389

}
α ≈ 11.57 (44)

4.4.2 Superposition Initialization

Recall the optimization of S requires S to be doubly stochastic, and the steps in section 3.2

have ensured the gradient descent update maintains the doubly stochastic nature of S,

assuming S is initially doubly stochastic. This section aims to enforce that.

When no tokens have been revealed, S = D (Eq. 31). To work with an arbitrary

amount of revealed tokens, S with dimensions N2 ×N2 is defined as follows:

Si,j =



1
N2−|R| , if (@a (a, j) ∈ R) ∧ (@b (i, b) ∈ R) if neither i or j have been revealed

0, if (∃a (a, j) ∈ R)⊕ (∃b (i, b) ∈ R) if only one of i or j has been revealed

1, if (∃a (a, j) ∈ R) ∧ (∃b (i, b) ∈ R) if i, j is a revealed token

(45)

Where ∧ denotes a logical and (true if both premises are true), and ⊕ is a logical XOR

(true if only 1 premise is true). For example, with R = {(3, 4), (2, 1)} and N = 2,

S =


0 1

2
1
2

0
1 0 0 0
0 0 0 1
0 1

2
1
2

0

 (46)

The doubly stochastic nature of S is intuitive, rows and columns which are revealed

have only 1 weight, 1, from the revealed token, and the weight of unrevealed rows and

columns are shared between fragments without revealed rows and columns.

4.4.3 Optimization Loop

The following is a summary of the optimization procedure:

1. For each element in {1, 2, . . . , N2} (revealing every token):

(a) Initialize S (Eq. 45)

21

(b) For noptim steps:

i. Calculate L(S) (Eq. 12)

ii. Calculate J (Eq. 15) and Jcut (Eq. 40)

iii. Calculate α (Eq. 44)

iv. Calculate ZLS-J ′cut (Eq. 33) and J ′final (Eq. 41)

v. Obtain S ′ from gradient descent update (Eq. 42)

vi. Ensure doubly stochastic S ′′ (Eq. 36)

(c) Reveal token (Eq. 38)

2. Obtain final X from R using Eq. 8

5 Evaluation

5.1 Graphs of Loss over Time

0 100 200 300 400 500

2.7

2.75

2.8

2.85

2.9

2.95

·106

Number of Iterations

L
os

s

Loss over Iterations

noptim = 1
noptim = 2
noptim = 4

Figure 9: Loss over number of gradient descent iterations for N = 11 for various noptim,
and n = 5. Lower bound constant has not been subtracted yet.

Fig. 9 shows the loss over time for N = 11 for various noptim with n = 5 (number of

RAS iterations). All of the tested values of N from [6, 30] had similar curves. The sharp

discontinuities within the curves when noptim > 1 are attributed to the reinitialization of

22

S, after revealing each of the N2 tokens. Furthermore, it can be observed that a higher

noptim leads to a lower final loss.

5.2 Comparison to State of the Art

N Loss
6 5526
7 17 779
8 57 152
9 144 459

10 362 950
11 740 798
12 1 585 264
13 2 888 120

N Loss
14 5 457 848
15 9 164 700
16 15 891 088
17 25 152 826
18 40 901 354
19 61 784 724
20 95 115 180
21 138 133 813

N Loss
22 203 877 974
23 286 960 950
24 409 173 438
25 560 363 762
26 776 271 362
27 1 039 341 134
28 1 404 785 310
29 1 843 328 926
30 2 439 441 116

Table 2: SoTA results on Reversing Nearness obtained from [1]

N noptim Loss
6 4 6088
7 4 19 050
8 4 63 972
9 4 156 871

10 4 408 960
11 4 808 639
12 4 1 741 120
13 4 3 081 512

N noptim Loss
14 4 5 986 496
15 4 9 860 722
16 2 17 411 568
17 2 28 262 956
18 2 44 567 096
19 2 67 792 800
20 2 103 479 680
21 2 147 573 376

N noptim Loss
22 2 223 649 376
23 2 308 724 928
24 2 446 677 760
25 2 605 336 704
26 2 840 422 400
27 2 1 129 623 808
28 2 1 539 258 368
29 2 2 009 468 416
30 2 2 667 657 728

Table 3: Gradient descent results on Reversing Nearness

The gradient descent results consistently maintained a loss within 13% above SoTA,

despite having significantly reduced computation times: N = 30 with noptim = 2 took

under 15 minutes using a graphical processing unit (GPU). The results here could be

improved trivially, by increasing noptim and requiring only more time.

5.3 Conclusion

Gradient descent has proved to be a generalizable algorithm, applicable to discrete

problems such as Reversing Nearness, by the use of superposition. Furthermore, the

computational complexity of gradient descent have proved to be viable for at least up to

N = 30, despite requiring N4 elements in S, a feat of its own.

23

References

[1] Al Zimmermann. Reversing Nearness. url: http://azspcs.com/Contest/Nearness

(visited on 02/25/2020).

[2] Yassine Mrabet. A simple Torus. 2007. url: https://upload.wikimedia.org/

wikipedia/commons/c/c6/Simple_Torus.svg (visited on 02/25/2020). License:

Creative Commons BY-SA.

[3] Eric W. Weisstein. Doubly Stochastic Matrix. From MathWorld–A Wolfram Web Re-

source. url: http://mathworld.wolfram.com/Tree.html (visited on 03/29/2020).

[4] Richard Sinkhorn and Paul Knopp. “Concerning nonnegative matrices and doubly

stochastic matrices”. In: Pacific Journal of Mathematics 21.2 (1967), pp. 343–348.

[5] Alberto Borobia and Rafael Cantó. “Matrix scaling: A geometric proof of Sinkhorn’s

theorem”. In: Linear algebra and its applications 268 (1998), pp. 1–8.

[6] Deeparnab Chakrabarty and Sanjeev Khanna. “Better and simpler error analysis of

the sinkhorn-knopp algorithm for matrix scaling”. In: arXiv preprint arXiv:1801.02790

(2018).

[7] Philip A Knight. “The Sinkhorn–Knopp algorithm: convergence and applications”.

In: SIAM Journal on Matrix Analysis and Applications 30.1 (2008), pp. 261–275.

[8] Manfred Weis (https://mathoverflow.net/users/31310/manfred-weis). Properties of

Zero Line-Sum Matrices. MathOverflow. eprint: https://mathoverflow.net/q/

293024. url: https://mathoverflow.net/q/293024.

A Lower Bound Constants

Table of lower bound constants copied from [1].

24

http://azspcs.com/Contest/Nearness
https://upload.wikimedia.org/wikipedia/commons/c/c6/Simple_Torus.svg
https://upload.wikimedia.org/wikipedia/commons/c/c6/Simple_Torus.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode
http://mathworld.wolfram.com/Tree.html
https://mathoverflow.net/q/293024
https://mathoverflow.net/q/293024
https://mathoverflow.net/q/293024

N Lower Bound
1 0
2 10
3 72
4 816
5 3800
6 16 902
7 52 528
8 155 840
9 381 672

10 902 550

N Lower Bound
11 1 883 244
12 3 813 912
13 7 103 408
14 12 958 148
15 22 225 500
16 37 474 816
17 60 291 180
18 95 730 984
19 146 469 252
20 221 736 200

N Lower Bound
21 325 763 172
22 474 261 920
23 673 706 892
24 949 783 680
25 1 311 600 000
26 1 799 572 164
27 2 425 939 956
28 3 252 444 776
29 4 294 801 980
30 5 643 997 650

25

	Introduction
	Problem Statement
	Toroidal Grid
	Evaluation Function
	Distance Metric
	Token Comparisons
	Loss Function in Matrix Form

	Superposition
	Definition
	Generalization of the Loss Function

	Optimization
	Gradient Descent
	Partial Derivative of Loss Function

	Generalization of Discrete Constraints
	Doubly Stochastic Matrices
	Sinkhorn-Knopp Algorithm
	Zero Line-Sum Modified Jacobian
	Non-negative Matrices

	Generalization to Discrete Solutions
	Optimization Procedure
	Learning Rate
	Superposition Initialization
	Optimization Loop

	Evaluation
	Graphs of Loss over Time
	Comparison to State of the Art
	Conclusion

	Lower Bound Constants

