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1 Introduction

When the layers in bilayer graphene are twisted at the magic angle (≈ 1.1°) and are
conditioned at temperatures below 1.7 K, the material becomes a superconductor, where
electrons can be transported with no electrical resistance.[1] This discovery has directly
influenced the forming of the field of twistronics (twist-electronics), which aims to quantify
how the twist between the layers of 2d-materials affects their electronic properties.[2]

Graphene is an allotrope of carbon, where each carbon atom is connected to 3 others by
covalent bonds, forming a 2d sheet. As such, graphene can be represented by a hexagonal
lattice, with its vertices representing carbon atoms and edges representing the bonds.
Twisted bilayer graphene on the other hand forms a hexagonal Moiré pattern like that
in Fig. 1, causing larger hexagonal cells to be formed and a corresponding hexagonal
super-structure.

Figure 1: Hexagonal Moiré pattern formed by an angle of twist θ = 10°, R = 20

Explaining and quantifying the superconductivity of these structures has been the
subject of research of many physicists. So in an attempt to explain the magic angle myself,
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I decided to approach this phenomena with what I had learnt about electronic circuits so
far—Kirchoff’s Circuit Law. Hence, the research question of this investigation is: Can
twisted bilayer graphene’s superconductivity at the magic angle be explained using an
Ohmic-model of resistance? Since it is impossible to have 0 Ω resistance within the Ohmic
model without a short circuit, the goal is to determine whether the resistance at the magic
angle is the global minimum of the resistance vs angle graph of the Moiré lattice.

2 Research Method

A completely computational method had to be used due to lack of access to a 3d-printer
with conductive filaments to perform physical experiments. Moreover, since existing
simulation software such as SPICE[3] were not meant for geometrically constructed
circuits, I created my own software, featuring Moiré lattice generation methods and line
intersection algorithms to obtain circuit nodes, they are omitted here because they are
beyond the scope of this essay.

There are no ethical or safety hazards to consider due to the computational nature of
this investigation.

2.1 Problem Definition

For the sake of consistency, each hexagonal cell within the Moiré lattice has a side length
of one (unitless) and the center of the lattice at coordinate (0, 0) has a shape resembling
shape (

Y

) instead of ( ). Each edge has an electrical resistance equal to the magnitude
of its length Ohms, for example a segment of length 1 has resistance 1 Ω. Let the size of
the lattice be bounded by a circle with radius R, meaning that all the outermost edges
will intersect this circle.

Figure 2: Hexagonal Moiré pattern with reference circle (red) and reference points (green),
R = 5, r = 3.5, θ = 10°

In order to answer the research question, the electrical resistance between 2 reference
points must be measured. These points are defined as having the coordinates (0, r) and
(0,−r) for all angles of twist θ between 2 hexagonal lattice layers.

There are 2 methods to form bilayer grids with twist θ as shown in Fig. 3a and Fig. 3b.
Fig. 3a is chosen because it preserves vertical symmetry, allowing the relative positions
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of the reference points against the 2 lattices to be identical (except for the reflection
transformation).

θ
2

θ
2

(a)

θ

(b)

Figure 3: Twisting 2 layers by θ

Also, the fixed definition of the reference points allows their positions to be invariant
to θ. Since these reference points are not necessarily on the Moiré grid, i.e., (0, r) may not
be on a lattice edge, a reference circle is employed. The reference circle has radius r and
is centered at (0, 0) like that in Fig. 2. Note that the circle is part of the circuit, forming
its own edges and electrical connections, allowing for the reference points to connect with
the rest of the hexagonal lattice. Although the circle is not part of graphene’s structure,
the overall effect the circle has on the resistance between the 2 reference points diminishes
with increasing r, because the ratio of the number of paths on the circumference of the
reference circle to the paths within the reference circle ∝∼

r
r2

. Simply put, the hexagonal
lattice within the reference circle influences the resistance more than the reference circle.

After the reference points, reference circle, and 2 hexagonal lattices are generated,
the intersections between all of them are calculated in order to create nodes, additional
vertices within the circuit which are created by overlapping line segments (i.e., electrical
wires). Instead of the circular arcs depicted like that in Fig. 2, each segment within
the reference circle is modelled using 2 straight line segments Fig. 5, whose total length
matches the length of the circular arc—the circular arc and the straight line segments are
electrically equivalent. The reference points are placed atop this “circle”.

Figure 4: Nodes within a lattice of overlapping hexagonal grids and a reference circle,
with nodes (green), reference points (red), R = 1.1, r = 0.5, θ = 10°
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2.2 Nodal analysis

In order to find the resistance between these two reference points, a fixed amount of
current (i.e., 1 A) is “injected” into one reference point and extracted from the other
reference point. The resulting voltage difference between them can be used to calculate
the effective resistance between these points, which is taken to be the effective resistance
of the Moiré lattice. The following descriptions outline a method based on [4] to compute
these voltages given the resistance between all nodes (calculated through the coordinates
of these nodes, since length is assumed to be synonymous with resistance).

2.2.1 Kirchoff’s Circuit Law

Kirchoff’s Current Law (KCL) states that the net current—the sum between ingoing and
outgoing currents—of any node is zero, unless there is an external current source.

I1 I2

I3I4

Figure 5: Applying KCL yields I1 + I4 = I2 + I3

KCL can be represented mathematically through the equation∑
i 6=j

Ii,j = 0 A (1)

where Ii,j indicates the current from node i “flowing” into node j. Ri,j represents the
resistance between the nodes. Note that i and j should are directly connected through a
single edge (i.e., no nodes in between). If nodes i and j are not directly connected, then
Ii,j = 0 A and Ri,j =∞Ω.

2.2.2 Ohm’s Law

A B

3 V 5 V

1 Ω

Figure 6: Simple circuit with VA = 3 V, VB = 5 V, and RA,B = 1 Ω

Ohm’s law states that V = IR. Taking Fig. 6 as an example, a more precise definition
of Ii,j using nodes can be stated as

Ii,j =
Vi − Vj
Ri,j

=
Vi
Ri,j

− Vj
Ri,j

IA,B = −2 A (2)
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Note that Ii,j is signed.
With Gi,j = R−1

i,j representing conductance, combining Eq. 1 and Eq. 2 yields∑
i 6=j

Ii,j =
∑
i 6=j

1

Ri,j

(Vi − Vj)

=
∑
i 6=j

Gi,jVi −
∑
i 6=j

Gi,jVj

= 0 A (3)

Eq. 3 forms the basis of node-voltage analysis. It can be used construct the linear system

GV = I (4)

where G, V, and I is the conductance matrix, voltage vector, and current vector, with
dimensions N ×N , N × 1, and N × 1 respectively with N as the total number of nodes in
the lattice. Vi represents the voltage of node i and Ii represents the net current of node i,
which is typically 0, unless i is a reference node in which case Ii = ±1 A—one reference
point has net current 1 A, while the other has net current −1 A in order to obey the law
of charge conservation. G on the other hand is defined as

Gi,j =

{∑
i 6=kGi,k if i = j, sum of all conductances connected to i

−Gi,j if i 6= j
(5)

Eq. 4 can be proved by performing a dot product between a row in G and V. Take
for example the first row of G,

I1 = G1,1V1 + G1,2V1 + G1,3V3 + ...

=
∑
16=k

G1,kV1 −G1,2V2 −G1,3V3 − ...

=
∑
16=k

G1,kV1 −
∑
16=j

G1,jVj (6)

Therefore, Eq. 6 and Eq. 3 are equivalent.

A

RA
,B

B

R
B
,C

C

R
A
,D

D

RC
,D

RB,D

Figure 7: Wheatstone bridge, with RA,B = 2 Ω, RA,D = 3 Ω, RB,D = 6 Ω, RB,C = 4 Ω, and
RC,D = 5 Ω
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Take for example the Wheatstone bridge in Fig. 7. Let A and C be reference points,
then Eq. 4 can be expanded as:

GV = I

A B C D


A 5
6
−1

2
0 −1

3

B −1
2

11
12

−1
4
−1

6

C 0 −1
4

9
20

−1
5

D −1
3
−1

6
−1

5
7
10


VA

VB

VC

VD

 =


1
0
−1
0

 (7)

To find V, the linear system can be inverted, forming

GV = I

G−1GV = G−1I

V = G−1I (8)

However, G is singular. Intuitively, this is because any voltage reference (i.e., where
V = 0 V) can be chosen. For simplicity’s sake, VD will be chosen as the voltage reference.
Now the last column and row of G can be omitted entirely and matrix inversion can be
applied.

V = G−1IVA

VB

VC

 =

 5
6
−1

2
0

−1
2

11
12
−1

4

0 −1
4

9
20

−1  1
0
−1


=

84
43

54
43

30
43

54
43

90
43

50
43

30
43

50
43

370
129

 1
0
−1


=

 54
43
4
43

−280
129

 ≈
 1.26

0.09
−2.17


(9)

Finally, the effective resistance between nodes A and C can be determined to be
Re = |∆V

I
| = 442

129
≈ 3.43 Ω.

3 Results

The nodal analysis method used within the Wheatstone bridge example was used to
calculate the resistance in hexagonal Moiré patterns. In particular, a lattice parameterized
by R = 30, r = 15, and various angles of θ (360 calculations, one for each degree between
0◦ and 360◦) was chosen. Due to the sheer number of nodes involved (> 16000), matrices
will not be shown.
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Figure 8: Resistance vs Angle graph of a hexagonal Moiré pattern with R = 30, r = 15

Table 1: Sample values from Fig. 8

θ(◦) Re(Ω)
1.0000 1.3913
2.0000 1.5036
3.0000 1.6104
4.0000 1.7133
5.0000 1.8095
6.0000 1.8974
7.0000 1.8838
8.0000 1.7973
9.0000 1.7003
10.0000 1.5979

Although the values within Table 1 are given accurate to 4 decimal places, the actual
values were precise up to 15 decimal places, they are abbreviated here for brevity. Error
bars are omitted from Fig. 8 because they are miniscule.

Computing the uncertainties of the obtained resistance values is intractable, due to
the complexity of the computational process, including but not limited to hexagonal grid
generation (trigonometric functions), rotation matrices (matrix-vector dot-products), line
intersection algorithms, and finally, a linear system solver to perform nodal analysis.

The graph exhibits a few peculiarities, most notably, that it is symmetric across 6 lines
of symmetry θ = [0◦, 60◦, 120◦, 180◦, 240◦, 300◦], this is because of the geometry of the
hexagon shape, which itself has 6 lines of symmetry. Moreover, the graph reveals that the
optimum angle for minimum resistance within this particular configuration (R = 30 and
r = 15) is 13± 1◦ (the error is used due to the angle increment used) with resistance of
1.35±0.03 Ω (the uncertainty is calculated from the resistance difference between adjacent
angles such as 14◦) a far result from twisted bilayer graphene’s superconductivity at the
magic angle 1.1◦.
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As such, it can be concluded that twisted bilayer graphene’s superconductivity cannot
be explained using a circuit model of Moiré patterns, and rather, the phenomena is
attributed to quantum interactions.

4 Evaluation

The computational method used within this investigation lends itself to many benefits.
First of all, the required complex graphene manufacturing processes and equipment to
sustain near absolute zero temperatures are completely sidestepped, making such an
investigation viable for an IB student. Moreover, even if 3d-printed Moiré patterns are
generated using a conductive filament, the simulation allows for virtually non-existent
random errors which would not be possible in physical conditions due to the precision of
computer hardware (≈ 15 decimal points). Error sources such as irreproducible contact
surfaces with an Ohmmeter and uneven filament thickness are completely avoided.

Several computational complexity problems had to be overcome during the program-
ming of the simulation. A grid-based intersection algorithm was used to exploit the
limited length of each segment within the Moiré lattice (i.e., 1), reducing the time com-
plexity of node generation from O(n log n) to O(n) (e.g., the time required to calculate
all intersections between 10 segments is approximately proportional to 10 s instead of
10 log 10 s). Also, duplicate nodes had to be removed (e.g., there are 3 nodes exactly at the
center of the lattice (0, 0) due to the 3 (

Y

) segments) because they invalidate the matrix
G with infinite conductances (0 resistance). Finally, a sparse matrix solver was used
to solve Eq. 4 (because most Gi,j = 0 Ω−1) reducing both the complexity and memory
requirements of QR-decomposition.[5] As a result of these optimizations, calculating the
effective resistance of the Moiré lattice (with R = 30, r = 15) for a single twisting angle
took merely ≈ 30 s. Calculating all the datapoints for Fig. 8 took ≈ 3 hours.

Yet, there are lots of improvements to be made regarding the research method. Within
this experiment, it is assumed that there is no interlayer resistance between the twisted
bilayer graphene sheets. This does not resemble graphene, where π-bonds are formed,
enabling intralayer and not interlayer conductivity. As such, an additional interlayer
resistance should be implemented when nodes are generated to accurately mirror the
physics of graphene atoms.

Lastly, there are systematic errors due to the addition of the reference circle: the
resistances in Fig. 8 are lower than they should be as the reference circle provides additional
paths for electricity to flow through. As mentioned within Section 2.1, one way to combat
this is to increase both R (resembling an infinite plane of graphene) and r, in order to
minimize the systematic error caused by the reference circle. Measuring the effects R
and r have on the resistance of the Moiré patterns would also be an interesting research
direction.

5 Conclusion

In conclusion, twisted bilayer graphene’s superconductivity cannot be explained through
an Ohmic representation of Moiré patterns due to a significant deviation between the
magic angle and the optimal twist angle computed (13◦). As such, quantum mechanics
modelling methods must be used instead in order to predict the characteristics of Moiré
lattices. Previous work done by [6] does exactly that, it utilizes Density Functional Theory
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and Electronic Band Structure calculations to propose potential 2d-layered materials with
desirable properties, while successfully obtaining the superconducting magic angle of 1.1◦.

However, it is yet to be known whether these quantum interactions can be modelled
by simply using interlayer resistance between the graphene sheets. Further research is
required, but this investigation has established the required preliminary work.
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