
Inverse kinematics via gradient descent
Mathematics Internal Assessment

12 pages



1 Introduction

When I think about automation, the first thing that comes to my mind is the image of

a fleet of robotic arms on an assembly line, operating at an incredible precision. But

these machines are not usually considered as “intelligent” due to their ubiquity in the

industry. This essay is an attempt to uncover the mathematical complexity behind robotic

arms, by proposing a solution to a problem which is fundamental within robotics: inverse

kinematics.

Inverse kinematics is the problem of determining the configuration of every joint within

an arm (e.g., by configuring its angle) in order to have the end-effector (the tip of the arm)

reach a specific target. We humans solve this problem effortlessly after years of experience:

every time you control your shoulder, elbow, and wrist joints to sip a cup of coffee, you

are solving inverse kinematics. But it is not trivial to distill that intuition into a robotic

arm. In fact, it is impossible to derive a closed-form solution[1] for inverse kinematics1

because it is possible to have an infinite number of solutions, as shown in Fig. 1.

−4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

x

y

Figure 1: 5 out of an infinite number of inverse kinematics solutions to reach a target
coordinate (black) with an arm with 3 segments of equal length 5

As such, inverse kinematics solutions are almost always obtained through iterative

methods whose accuracy improves with the number of iterations. Although there are

iterative non-gradient based inverse kinematics solutions such as Cyclic Coordinate

Descent[2], the scope of this essay is limited to an iterative gradient-based method called

gradient descent, which allows me to make the most out of my calculus classes.

The goal of this essay is the answer the question: can gradient descent be used to solve

inverse kinematics?

1except when the arm with only 2 segments

1



2 Forward kinematics

Throughout this essay, the axes naming convention in Fig. 2 will be used, the base of any

arm will be at s0 = (0, 0, 0) in 3d or s0 = (0, 0) in 2d, lengths have arbitrary units, and

angles are in radians.

x

y

z

Figure 2: Axes naming convention

2.1 2 dimensions

To describe an arm mathematically, let any arm consisting of n joints/segments be

parameterized by l = [l1, l2, ..., ln] and θ = [θ1, θ2, ...θn]. Where li is the length of segment i

and θi is the angle measured counterclockwise from the extension of the previous segment

(i− 1) to segment i. An example configuration is shown in Fig. 3.

y

x
0 1 2 3 4 5 6

0

1

2

3

4

l1
l2

l3

s0

s1

s2

s3

θ1

θ2

θ3

Figure 3: An xy view of an arm parameterized by l = [3, 2, 2] and θ = [1,−1.5, 1]

There are several important observations to make:

1. The arm is only composed of “bending”-joints, which rotate segments with larger

values of i in the xy-plane, for example, θ2 affects the direction of segment 3 but

not segment 1,

2. θ1 is defined as the angle measured counterclockwise from the positive x-axis to

segment 1 since segment (−1) does not exist, and

3. θi can be negative, as shown through the direction of the angle measure arrows in

Fig. 3.

2



Let si = (xi, yi) denote the end position of segment i. In order to optimize θ so that

the end effector sn nears a target position, sn itself must first be calculated — this is the

problem of forward kinematics. To calculate sn, the end positions of previous segments

must also be obtained. Using the arm in Fig. 3 as an example, s1 can be deduced using

simple trigonometry:

x1 = x0 + l1 cos θ1= 0 + 3 cos 1 ≈ 1.62

y1 = y0 + l1 sin θ1 = 0 + 3 sin 1 ≈ 2.52 (1)

Let θ′i be defined as the counterclockwise angle between from the positive direction of

a horizontal line to segment i. Deriving s2 is a bit more involved, since cosine and sine

functions measure offsets against the x- and y-axes respectively, but θ2 is not calculated

with the x-axis as a reference, but against the extension of segment 1. As such, θ′2 must

be obtained.

θ′1

θ2

θ′2

Figure 4: Close-up of Fig. 3 and θ′2

As shown in Fig. 4, because both horizontal lines are parallel,

θ′1 = θ1 = −θ2 + θ′2

θ′2 = θ′1 + θ2 (2)

θ′1 is equivalent to θ1 by definition, as demonstrated in Observation 2. Now s2 can be

obtained with θ′2:

x2 = x1 + l2 cos θ′2

= l1 cos (θ1) + l2 cos (θ1 + θ2)

= 3 cos 1 + 2 cos (1− 1.5) ≈ 3.38

y2 = y1 + l2 sin θ′2

= l1 sin (θ1) + l2 sin (θ1 + θ2)

= 3 sin 1 + 2 sin (1− 1.5) ≈ 1.57 (3)

To find s3, θ
′
3 can be written as:

θ′3 = θ′2 + θ3 = θ1 + θ2 + θ3

Loosely speaking, this is because in Fig. 4, θ′1 can be substituted with θ′2, θ2 with θ3, and

3



θ′2 with θ′3. Applying this property ad infinitum, θ′j is equivalent to

θ′j = θ1 + θ2 + ...+ θi =

j∑
k=1

θk (4)

Calculating s3:

x3 = x2 + l3 cos θ′3

= l1 cos (θ1) + l2 cos (θ1 + θ2) + l3 cos (θ1 + θ2 + θ3)

= 3 cos 1 + 2 cos (1− 1.5) + 2 cos (1− 1.5 + 1) ≈ 5.13

y3 = y2 + l3 sin θ′3

= l1 sin (θ1) + l2 sin (θ1 + θ2) + l3 sin (θ1 + θ2 + θ3)

= 3 sin 1 + 2 sin (1− 1.5) + 2 sin (1− 1.5 + 1) ≈ 2.52 (5)

All example points si for i = [0, 1, 2, 3] are plotted in Fig. 3.

Extrapolating from Eq. 1, Eq. 3, and Eq. 5, the general equation for si can be written

as:

xi = l1 cos (θ1) + l2 cos (θ1 + θ2) + ...+ li cos (θ1 + θ2 + ...+ θi)

=
i∑

j=1

lj cos

(
j∑

k=1

θk

)
yi = l1 sin (θ1) + l2 sin (θ1 + θ2) + ...+ li sin (θ1 + θ2 + ...+ θi)

=
i∑

j=1

lj sin

(
j∑

k=1

θk

)
(6)

2.2 3 dimensions

But robotic arms aren’t 2-dimensional, they are usually able to reach objects in 3

coordinates. The easiest way to generalize Eq. 6 to 3 dimensions is to introduce a single

rotation joint at the base of the arm which operates in the xz-plane. Let this joint be

parameterized by θb, defined as the clockwise angle between from the positive x-axis to

segment 1 when θ1 = 0 as measured through a birds-eye view (when y > 0).2 An example

configuration is shown in Fig. 5.

2the θ1 = 0 condition is required so that θb does not change by π when θ1 fluctuates between θ1 <
π
2

and θ1 >
π
2

4



x

z

0 1 2 3 4 5
0

1

2

3

s0

s3

θb

Figure 5: A birds-eye xz-projection of an arm parameterized by l = [3, 2, 2] θ = [1,−1.5, 1],
and θb = 0.5

Note that in 3 dimensions, si is redefined as (xi, yi, zi). The changes needed to Eq. 6

accommodate this are trivial. xi is split into xi and zi, while yi remains identical since a

rotation in the xz-plane does not affect y-axis coordinates. In summary, si can be written

as

xi = cos (θb)
i∑

j=1

lj cos

(
j∑

k=1

θk

)

yi =
i∑

j=1

lj sin

(
j∑

k=1

θk

)

zi = sin (θb)
i∑

j=1

lj cos

(
j∑

k=1

θk

)
(7)

Recalculating s3 for Fig. 5 using values already obtained in Eq. 5:

x3 ≈ cos (0.5) · 5.13 ≈ 4.50

y3 ≈ 2.52

z3 ≈ sin (0.5) · 5.13 ≈ 2.46 (8)

x3 and z3 are also plotted in Fig. 5.

3 Inverse kinematics

Now that sn can be found given l, θ, and θb, how do you find θ and θb given sn and l?

3.1 Gradient descent

Gradient descent[3] is an algorithm to iteratively minimize a loss function, with information

of the first derivative. A single iteration of gradient descent is defined as follows:

θ′ = θ − αdL(θ)

dθ
(9)

where θ is the parameter to optimize, θ′ is the newly optimized parameter value, L is the

loss function, and α is an arbitrary positive scaling factor. Intuitively, this means that θ

5



is shifted in the direction that minimizes L(θ) in proportion to how sensitive L(θ) is to θ

(the definition of a derivative).

0 0.5 1 1.5

0

0.5

1

x

y

Figure 6: 30 iterations of gradient descent applied on L(θ) = sin2(θ), initial θ = 1.4, and
α = 0.1. Each black point represents an updated θ′.

Fig. 6 demonstrates gradient descent’s effectiveness in converging to a local minimum

on a relatively simple function. The hope is for it to generalize to the inverse kinematics

problem.

First of all, Eq. 9 must be modified to use partial derivatives, to be able to optimize

multiple θi and θb in the inverse kinematics problem simultaneously:

θ′i = θi − α
∂L(θ1, ..., θn, θb)

∂θi
and θ′b = θb − α

∂L(θ1, ..., θn, θb)

∂θb
(10)

3.2 Loss function derivatives

Let st = (xt, yt, zt) denote the target position, the desired value of sn (the end-effector).

Inverse kinematics can be framed as a gradient descent optimization problem by choosing

a function L that decreases as sn approaches st. Theoretically, almost any distance metric

can be used for L, but the squared Euclidean distance[4] d2euclid will be used here for

simplicity.3 Thus, the value of L can be written as:

L(θ1, ..., θn, θb) = d2euclid(st, sn) = (xt − xn)2 + (yt − yn)2 + (zt − zn)2 (11)

where sn is to be calculated with Eq. 7.

Now the partial derivative against θi in Eq. 10 can be evaluated:

∂L(θ1, ..., θn, θb)

∂θi
=
∂ ((xt − xn)2 + (yt − yn)2 + (zt − zn)2)

∂θi

→ splitting the terms and applying chain rule,

∂L(θ1, ..., θn, θb)

∂θi
= 2(xt − xn)

∂(xt − xn)

∂θi
+ 2(yt − yn)

∂(yt − yn)

∂θi
+ 2(zt − zn)

∂(zt − zn)

∂θi

3to avoid a square root term and another chain rule application

6



→ omitting xt, yt, and zt in the numerator because they are constant with respect to θi,

∂L(θ1, ..., θn, θb)

∂θi
= 2(xt − xn)

∂(−xn)

∂θi
+ 2(yt − yn)

∂(−yn)

∂θi
+ 2(zt − zn)

∂(−zn)

∂θi
(12)

→ computing ∂(−xn)
∂θi

by substituting in Eq. 7:

∂(−xn)

∂θi
= − cos (θb)

∂

∂θi
(l1 cos (θ1) + ...+ ln cos (θ1 + ...+ θi + ...+ θn))

→ omitting terms which do not contain θi because they evaluate to 0,

∂(−xn)

∂θi
= − cos (θb)

∂

∂θi
(li cos (θ1 + ...+ θi) + ...+ ln cos (θ1 + ...+ θi + ...+ θn))

→ taking the derivative of cos,

∂(−xn)

∂θi
= cos (θb) (li sin (θ1 + ...+ θi) + ...+ ln sin (θ1 + ...+ θi + ...+ θn))

= cos (θb)
n∑
j=i

lj sin

(
j∑

k=1

θk

)
→ substituting in Eq. 7’s yi,

∂(−xn)

∂θi
= cos (θb) (yn − yi−1) (13)

→ by using the same steps, ∂(−yn)
∂θi

and ∂(−zn)
∂θi

were found to be:

∂(−yn)

∂θi
= −

n∑
j=i

lj cos

(
j∑

k=1

θk

)
= −xn − xi−1

cos θb

∂(−zn)

∂θi
= sin (θb)

n∑
j=i

lj sin

(
j∑

k=1

θk

)
= sin (θb) (yn − yi−1) (14)

→ substituting Eq. 13 and Eq. 14 into Eq. 12 yields the final ∂L(θ1,...,θn,θb)
∂θi

:

∂L(θ1, ..., θn, θb)

∂θi
=2 cos (θb)(xt − xn)(yn − yi−1)

− 2(yt − yn)
xn − xi−1

cos θb

+ 2 sin (θb)(zt − zn)(yn − yi−1) (15)

The partial derivative for θb is handled differently:

∂L(θ1, ..., θn, θb)

∂θb
= 2(xt − xn)

∂(−xn)

∂θb
+ 2(yt − yn)

∂(−yn)

∂θb
+ 2(zt − zn)

∂(−zn)

∂θb
(16)

→ substituting in Eq. 7 and taking the derivative,

∂(−xn)

∂θb
= − ∂

∂θb
cos (θb)

n∑
j=1

lj cos

(
j∑

k=1

θk

)
= zn

∂(−yn)

∂θb
=

∂

∂θb

n∑
j=1

lj sin

(
j∑

k=1

θk

)
= 0

7



∂(−zn)

∂θb
= − ∂

∂θb
sin (θb)

n∑
j=1

lj cos

(
j∑

k=1

θk

)
= −xn (17)

→ substituting Eq. 17 into Eq. 16 yields the final

∂L(θ1, ..., θn, θb)

∂θb
= 2(xt − xn)zn − 2(zt − zn)xn (18)

The reason θb is optimized through gradient descent instead of deducing it from Fig. 5,

that is,

θb = arctan
zt
xt

(19)

is because Eq. 19 necessitates the use of additional acceleration/deceleration functions

in order to prevent an abrupt change in the sn, whereas gradient descent is inherently

smooth in its θ transitions,4 see Fig. 6 for a visual example.

Although it should have been obvious that the partial derivatives only depend on the

values of si, I found the simplicity of Eq. 15 and Eq. 18 to be quite surprising because the∑
s could be tucked away behind si−1.

3.3 Gradient descent update

Now that all the partial derivative equations have been obtained, gradient descent opti-

mization can be used to solve the inverse kinematics problem. For example, let an arm

have the same the parameters as Fig. 5, where l = [3, 2, 2], θ = [1,−1.5, 1], and θb = 0.5,

with target st = [6, 4,−2]. First, si for i ∈ [0, 1, 2, 3] must be calculated:5

i xi yi zi
0 0.00 0.00 0.00
1 1.42 2.52 0.78
2 2.96 1.57 1.62
3 4.50 2.52 2.46

Table 1: Values of si for l = [3, 2, 2], θ = [1,−1.5, 1], and θb = 0.5

From Table 1, d2euclid(st, sn) (Eq. 11) can be calculated:

d2euclid(st, sn) = (xt − xn)2 + (yt − yn)2 + (zt − zn)2

≈ (6− 4.50)2 + (4− 2.52)2 + (−2− 2.46)2

≈ 24.31 (20)

Next, the partial derivatives should be computed. Calculating ∂L(θ1,...,θn,θb)
∂θ1

using

Eq. 15:

∂L(θ1, ..., θn, θb)

∂θ1
=2 cos (θb)(xt − x3)(y3 − y0)

4for relatively small values of α in Eq. 10
5since examples have already been given in Eq. 5 and Eq. 8, working will be omitted here for brevity

8



− 2(yt − y3)
x3 − x0
cos θb

+ 2 sin (θb)(zt − z3)(y3 − y0)

≈2 cos (0.5)(6− 4.50)(2.52− 0.00)

− 2(4− 2.52)
4.50− 0.00

cos (0.5)

+ 2 sin (0.5)(−2− 2.46)(2.52− 0.00)

≈6.63− 15.14− 10.80 ≈ −19.31 (21)

Using the same method, ∂L(θ1,...,θn,θb)
∂θ2

≈ −10.36 and ∂L(θ1,...,θn,θb)
∂θ3

≈ −6.76.

Calculating ∂L(θ1,...,θn,θb)
∂θb

using Eq. 18:

∂L(θ1, ..., θn, θb)

∂θb
= 2(xt − xn)zn − 2(zt − zn)xn

≈ 2(6− 4.50)2.46− 2(−2− 2.46)4.50

≈ 7.37 + 40.17 ≈ 47.53 (22)

A small α = 10−3 will be used so that the maximum ∆θ is approximately 0.1. Now

the gradient descent update from Eq. 10 can finally be performed:


θ′1

θ′2

θ′3

θ′b

 =


θ1

θ2

θ3

θb

− α∂L(θ1, ..., θn, θb)

∂θ

≈


1

−1.5

1

0.5

− 10−3


−19.31

−10.36

−6.76

47.53

 ≈


1.02

−1.49

1.01

0.45

 (23)

Let s′n denote sn recalculated with θ′i and θ′b. Calculating d2euclid(st, s
′
n) with the

new parameters obtained in Eq. 23 leads to a lower L(θ1, ..., θn, θb) ≈ 21.62 because

s′3 = [4.56, 2.67, 2.22]. The change in Eq. 23 is shown visually in Fig. 7.

9



Figure 7: 3d plot of arms in multiple stages of gradient descent. Red: initial parameters
l = [3, 2, 2], θ = [1,−1.5, 1] and θb = 0.5, Green: after 1 iteration, Blue: after 100
iterations. st = [6, 4,−2] in black.

4 Evaluation

4.1 Advantages

0 50 100 150 200 250
0

5

10

15

20

Number of iterations

d
2 eu
cl
id

(s
t,
s′ 3

)

Figure 8: Graph of d2euclid with an increasing number of gradient descent iterations. Same
arm configuration as Fig. 7.

In response to the research question, it can be deduced that gradient descent is a viable

approach in tackling inverse kinematics, as made apparent by Fig. 7 and Fig. 8. Fig. 7

shows visually that gradient descent allows the position of the end-effector s′3 to approach

the target st. Moreover, Fig. 8 empirically demonstrates that the loss function decays

approximately exponentially, confirming that the distance between s′3 and st decreases

with the number of gradient descent iterations. Therefore, it can be concluded that the

value of d2euclid(st, s
′
3) converges asymptotically with gradient descent.

10



There is an additional observation to make about Fig. 7: it is impossible to achieve

d2euclid(st, s
′
3) = 0 with l = [3, 2, 2], because the total length of all the segments (7) is less

than the magnitude of st (≈ 7.48). This highlights an advantage an iterative method

like gradient descent has over analytical/closed-form solutions:6 iterative methods “try

their best”, leading to solutions which are optimally close to st where analytical methods

would fail.7 What impressed me the most however was that gradient descent was able to

converge onto a single inverse kinematics solution out of the potentially infinite number

of solutions Fig. 1. It was outright magical for me to be able to finally understand how

these machines work.

Note that the forward and inverse kinematics framework provided within this essay

are not limited to the case where n = 3, specific values of l, or certain initial values θ and

θb; a single example was used throughout the essay for the sole purpose of maintaining

coherence. The only restriction which was found after trial and error was that α had to

be adequately small (α < 10−2) to ensure convergence and prevent fluctuations in Fig. 8.

This is not to say that the framework is foolproof.

4.2 Limitations

First of all, the types of the joints (xy-8 and xz- rotation joints) used within this essay

were purposefully simplistic, the minimum needed to allow sn to span 3-dimensions. In

reality, robotic arms involve more complex joints such as rotation joints which do not

operate in a plane perpendicular to x-, y-, or z-axes and shoulder-joints. Although it is

technically possible to derive forward kinematics equations with
∑

-notation like that in

Eq. 7, it is more feasible to use the transformation and Jacobian matrices outlined in [5]

instead.

Moreover, the framework presented within this essay lacks collision detection, allowing

conditions such as that in Fig. 9 to occur.

−2 0 2 4
−2

0

2

4

6

x

y

Figure 9: xy-view of an arm with l = [5, 5, 5], θ ≈ [1.80,−2.16,−2.35], and θb = 0 with
st = [−1, 1]

6if there were any for n > 2
7e.g. the solution to the quadratic solving inverse kinematics where n = 2 would be undefined if st is

out of range due to a negative discriminant
8xy in 2d, any plane perpendicular to xz in 3d

11



Quite obviously, a physical arm cannot intersect itself and would instead damage the

actuators and motors within the arm.

A possible way to counteract this is to perform multi-objective optimization.[6] For

each segment, the shortest distance to another segment (which is not directly connected

via a joint) should be calculated, and the sum of the negatives of these distances should

be added to the loss function in Eq. 11. As a result, gradient descent should minimize the

loss by maximizing the distance between segments (which are not already connected via

a joint), minimizing collisions. This suggestion is merely hypothetical and has not been

tested.

Similarly, there is a way to minimize the energy consumption of the arm by minimizing

the total torque applied by all of the joints within the arm. The summation of torque

values can also be added to Eq. 11 so that gradient descent will minimize the loss by

minimizing the total torque and hence, the necessary power to operate the arm.

Both of these would allow for the gradient descent algorithm to be more robust and

applicable to deployments in the industry.

This essay has merely scratched the surface of what is possible by successfully, albeit

simplistically, applying gradient descent to the problem of inverse kinematics. There are

still an armful of possible improvements to extend the reach of these arms.

References

[1] user25658, What does a ”closed-form solution” mean? Cross Validated. [Online].

Available: https://stats.stackexchange.com/q/70850.

[2] R. Juckett, Cyclic coordinate descent in 2d, Feb. 2009. [Online]. Available: http:

//www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-2d/.

[3] E. W. Weisstein. (). “Method of steepest descent, From mathworld–a wolfram web re-

source,” [Online]. Available: https://mathworld.wolfram.com/MethodofSteepestDescent.

html (visited on 06/09/2020).

[4] ——, (). “Euclidean metric, From mathworld–a wolfram web resource,” [Online].

Available: https://mathworld.wolfram.com/EuclideanMetric.html (visited on

12/05/2020).

[5] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse

and damped least squares methods,” IEEE Journal of Robotics and Automation,

vol. 17, no. 1-19, p. 16, 2004.

[6] K. Deb, “Multi-objective optimization,” in Search methodologies, Springer, 2014,

pp. 403–449.

12

https://stats.stackexchange.com/q/70850
http://www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-2d/
http://www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-2d/
https://mathworld.wolfram.com/MethodofSteepestDescent.html
https://mathworld.wolfram.com/MethodofSteepestDescent.html
https://mathworld.wolfram.com/EuclideanMetric.html

	Introduction
	Forward kinematics
	2 dimensions
	3 dimensions

	Inverse kinematics
	Gradient descent
	Loss function derivatives
	Gradient descent update

	Evaluation
	Advantages
	Limitations


